Шим стабилизатор напряжения 12 вольт

Всем читателям ПРИВЕТ! В одной из своих записей я рассказал, что поставил на автомобиль ДХО. Однако, не успел поставить стабилизатор напряжения. Для чего нужен он, да все просто.
Итак, в бортовой сети автомобиля рабочее питание составляет от 12,8 до 14,7 Вольт (на разных машинах по своему), а вот светодиоды рассчитаны на 12 вольт. Поэтому приходится ставить стабилизатор, который на выходе всегда держит 12 вольт, не зависимо сколько у нас в борт сети автомобиля. Конечно можно подключить и без стабилизатора, но в этом случаи светодиоды прослужат не долго из-за перепадов напряжения автомобиля. Физику светодиодов можно почитать в интернете, информации полно!

Можно было заказать с АлиЭкспресс, но я решил делать сам. Опыт был уже.
Для изготовления стабилизатора мною были приобретены следующие компоненты:
1. Стабилизатор 2шт.
2. Конденсатор 100 мкФ 16V 2 шт.
3. Конденсатор 330 мкФ 16V 2 шт.
Итог: 70₽
Провода: взял от компьютера, так как они на концах уже изолированы и идеально подходят для купленных стабилизаторов.

Выбрал схему подключения (рисунок 1). Однако, в выбранной схеме исключил диод, так как он нужен грубо говоря, когда на выходе стабилизатора напряжение будет больше, чем на входе! Но такое бывает очень редко, можно сказать никогда!

Напряжение постоянного тока для питания многих электрических устройств, гаджетов и электронных схем, требует стабилизации. Часто встречающиеся величины напряжений – 5, 9, 12 и 24 вольта. Наиболее востребованы преобразователи на 12 В. Питание генераторов, усилителей, светодиодных подсветок, зарядных устройств осуществляется именно этой величиной напряжения. Стабилизатор 12в является неотъемлемой частью схем блоков питания.

Разновидности 12В стабилизаторов

Подобные устройства могут быть собраны на транзисторах или на интегральных микросхемах. Их задача – обеспечить значение номинального напряжения Uном в нужных пределах, несмотря на колебания входящих параметров. Наиболее популярны следующие схемы:

Схема линейной стабилизации представляет собой простой делитель по напряжению. Его работа заключается в том, что при подаче на одно «плечо» Uвх, на другом «плече» изменяется сопротивление. Это поддерживает Uвых в заданных пределах.

Важно! При такой схеме при большом разбросе значений между входным и выходным напряжениями происходит падение КПД (некоторое количество энергии переходит в тепло), и требуется применение теплоотводов.

Импульсная стабилизация контролируется ШИМ-контроллером. Он, управляя ключом, регулирует длительность токовых импульсов. Контроллер проводит сравнение величины опорного (заданного) напряжения с напряжением на выходе. Входное напряжение подаётся на ключ, который, открываясь и закрываясь, подаёт полученные импульсы через фильтр (ёмкость или дроссель) на нагрузку.

К сведению. Импульсные стабилизаторы напряжения (СН) обладают большим КПД, требуют меньшего отвода тепла, но электрические импульсы при работе создают помехи для электронных устройств. Самостоятельная сборка подобных схем имеет существенные сложности.

Классический стабилизатор

Такое устройство имеет в своём составе: трансформатор, выпрямитель, фильтры и узел стабилизации. Стабилизация обычно осуществляется при помощи стабилитронов и транзисторов.

Основную работу выполняет стабилитрон. Это своеобразный диод, который подключается в схему в обратной полярности. Рабочий режим у него – режим пробоя. Принцип работы классического СН:

  • при подаче на стабилитрон Uвх 12 В он открывается и удерживает заявленное напряжение постоянным.

Внимание! Подача Uвх, превышающего максимальные значения, указанные для определённого вида стабилитрона, приводит к его выходу из строя.

Интегральный стабилизатор

Все элементы конструкции таких устройств располагаются на кристалле из кремния, сборка заключена в корпусе интегральной микросхемы (ИМС). Они собраны на базе двух типов ИМС: полупроводниковых и гибридно-плёночных. У первых компоненты твердотельные, у вторых – изготовлены из плёнок.

Главное! У таких деталей всего три вывода: вход, выход и регулировка. Такая микросхема может выдавать стабильно напряжение величиной 12 В при интервале Uвх = 26-30 В и токе до 1 А без дополнительной обвязки.

Целесообразность использования LT 1083/84/85

В схеме стабилизатора напряжения на 12 вольт может быть разная ИМС. В зависимости от серии микросхемы, условия для её работы разнятся. Микросборки серии LT 1083/84/85 можно применять для изготовления стабилизатора на такое напряжение.

К сведению. Ток на выходе LT 1083 может достигать 7 А, на LT 1084 и LT 1085 допустимые токи нагрузки – 5 А и 3 А, соответственно.

Конструкторы для радиолюбителей, поставляемые из Китая, предлагают самостоятельно собрать схему простого блока питания на подобной платформе стабилизаторов.

Стабилизатор, входящий в данную схему, выдаёт на выходе ток до 7,4 А. Резистор R2, позволяющий изменять величину выходного напряжения, можно заменить постоянным, подобрав его значение так, чтобы U на выходе было равно 12 В. Диоды подбираются на напряжение не менее 50 В и ток не менее 12 А.

Внимание! СН на этой микросхеме требует разницы напряжения между входом и выходом не менее 1,5 В. При выполнении этого условия ИМС будет выдавать стабильное напряжение. При этом она имеет тепловую защиту и защиту от превышения значения выходного тока.

Простой СН, сделанный своими руками

Стабилизатор напряжения 12 вольт для светодиодов, подсветок автомобильных бортовых систем быстро и удобно выполнять, используя для этого микросхемы: LM317, LD1084, L7812, КРЕН 8Б и им подобные устройства. Несколько диодов, сопротивление и сама микросхема – вот составляющие такого СН.

Стабилизатор на LM317

В зависимости от варианта изготовления корпуса LM317 подбирают расположение деталей на плате.

Читайте также:  Свиньи породы ландрас фото

Изготовление стабилизатора сводится к следующему:

  • к выходу (Vout) припаивают сопротивление с номинальным значением 130 Ом;
  • к контакту входа (Vin) присоединяют провод, подающий напряжение для стабилизации;
  • регулировочный вход (Adj) подключают ко второму выводу резистора.

При подключении в качестве нагрузки светодиодных фонарей, лент и т.д. радиатор не требуется. Сборка занимает 15-20 минут при минимуме деталей. Используя несложную формулу, можно рассчитывать величину сопротивления R для получения определённой величины допустимого тока нагрузки.

Схема на микросхеме LD1084

Поддержанию напряжения 12 В неизменным для устройств светодиодной иллюминации, подключённой к бортовой сети автомобиля, поможет применение данной микросборки.

Здесь для сборки самодельного СН в цепь обвязки микросхемы включаются:

  • два электролитических конденсатора по 10 мкФ * 25 В;
  • резисторы: 1 кОм (2 шт.), 120 Ом, 4,7 кОм (можно постоянный);
  • диодный мост RS407.

Устройство собирается следующим образом:

  • напряжение, снимаемое с диодного моста выпрямителя, подаётся на вход LD1084;
  • на контакт, управляющий режимом стабилизации (Adj), присоединяют эмиттер транзистора КТ818, база которого соединена через два одноколонных сопротивления с цепями питания света фар (ближнего и дальнего);
  • выходная цепь микросхемы соединена с резисторами R1 и R2, а также с конденсатором.

Кстати. Резистор R2 можно брать не переменный, а подстроечный, выставив с его помощью величину выходного напряжения 12 В.

Стабилизатор на диодах и сборке L7812

Подобная микросхема в связке с диодом и конденсаторами может снабжать светодиоды стабильным напряжением 12 В.

Схема построена по ниже изложенному принципу:

  • диод Шоттки 1N401 пропускает через себя ток от плюсовой клеммы аккумулятора и подаёт его на вход микросхемы. При этом «+» электролита (конденсатора на 330 мкФ) также соединён с катодом диода;
  • на выход L7812 присоединяют цепь нагрузки и «+» конденсатора ёмкостью 100 мкФ;
  • все минусовые клеммы (от аккумулятора и обоих электролитических конденсаторов) соединяются с управляющим входом микросхемы.

Электролитические конденсаторы подбирают на напряжение не ниже 25 В.

Самый простой стабилизатор – плата КРЕН

Схемы с использованием крен довольно популярны. Так называют ИМС, в маркировку которых входят сочетания букв КР и ЕН. Это мощные СН, позволяющие выдавать на нагрузку ток до 1,5 А. Они имеют на выходе стабильные 12 В при подаче на вход напряжения до 35 В.

Схема с использованием этой микросхемы собирается так:

  • напряжение с плюсовой клеммы АКБ (аккумуляторной батареи) на вход крен подаётся через диод 1N4007, он защищает цепь аккумулятора от обратных напряжений;
  • минусовая клемма АКБ соединяется с управляющим электродом КРЕН;
  • напряжение с выхода подаётся на нагрузку.

При необходимости микросхему прикручивают к радиатору.

Сборка своими руками стабилизаторов напряжения на 12 В с использованием схем линейных и интегральных СН не составляет особого труда. При этом необходимо следить за температурой нагрева корпуса элементов и при Т0С выше допустимой устанавливать их на теплоотводы (радиаторы).

Видео

В статье описываются различные варианты построения AC/DC преобразователей со стабилизацией выходного напряжения или выходного тока предназначенные для работы как на активную, так и на индуктивную нагрузку.

Широтно-импульсная модуляция (PWM, Pulse-Width Modu­lation) — это распространенный способ управления мощнос­тью, подводимой к нагрузке, методом изменения ширины (дли­тельности) импульсов или паузы между импульсами при по­стоянной или изменяющейся частоте. ШИМ широко приме­няется в промышленности и в быту для регулировки и ста­билизации напряжения или тока преобразователей, блоков питания, зарядных устройств, сварочных аппаратов и т.п.

На рис.1 отображены различные варианты ШИМ. Отно­шение периода следования электрических импульсов к их длительности называется скважностью, а для ШИМ-регуляторов — это величина обратная мощности выделяемой в нагрузке. Так для уменьшения тока нагрузки мы должны уве­личивать скважность регулируемого тока и наоборот.

Вниманию читателей предлагается схема устройства, на основе таймера NE555 (отечественный аналог 1006ВИ1) Это — источник регулируемого стабильного напряжения или тока для изолированных от земли мощных потребителей посто­янного тока, таких как, например, роторы мощных синхрон­ных машин или двигатели постоянного тока (ДПТ). На рис.2 показан стабилизатор напряжения, на рис.3 — стабилиза­тор тока. Максимальная величина тока нагрузки (в десят­ки или даже сотни ампер) определяется способностью се­тевого выпрямительного моста VD1, силового ключа VТ1 и габаритами радиатора охлаждения, на котором они установ­лены. а при индуктивной нагрузке — еще и параметрами диода VD7, ток через который, в этом случае, соизмерим с током нагрузки.

Работает стабилизатор следующим образом: при дости­жении параметра на соответствующем датчике напряжения или тока (R14 на рис.3), на резисторе RV1, а, следователь­но, и на оптроне VU1 формируется сигнал обратной связи, который блокирует работу задающего генератора DA1 и, та­ким образом, запирает силовой ключ VT1. Выходной параметр, вследствие разряда емкости и/или индуктивности, начинает снижаться и затем работа генератора возобновляется.

Из-за высокого быстродействия микросхемы, частота ком­мутирования режимов работа-блокировка получается значи­тельной и может даже превышать частоту генерации ШИМ (рис.4) и, как следствие, коэффициент стабилизации схемы будет довольно высоким.

Рассмотренный выше автоматический способ управления таймером NE555 по входу Е (выв.4) не является единствен­но возможным. Управляющий сигнал через оптрон (или ка­ким-либо другим методом) можно подавать на вход R (выв.6), т.е. на частотозадающий конденсатор С11, при этом можно регулировать скважность в достаточно широких пределах, или на вход Uн (выв.5). При этом пределы регулирования будут несколько меньше, но можно добиться так называемого эф­фекта перерегулирования. В этом случае при уменьшении се­тевого напряжения или при увеличении тока нагрузки, выход­ное напряжение не уменьшается, а увеличивается и наоборот.

О деталях преобразователя

В роли (рис.2 и рис.3) лучше всего использовать мощный IGBT или MOSFEET транзистор с номинальным то­ком не ниже максимального тока нагрузки.

Читайте также:  Укоренение черенков винограда весной

Например, для построения возбудителя мощного синхрон­ного двигателя можно использовать IGBT транзистор, изоб­раженный на рис.5 – MG300Q1US11 (номинальный ток 300 А и напряжение более 1000 В). В практике ремонта оборудо­вания у электриков бывают случаи выхода со строя силовых IGBT-модулей, таких, например, как SKM150GB128D (рис.6), M150DSA120 или CM200DY-24NF (рис.7). При этом, как правило, один из двух транзисторов модуля остается ис­правным. Для нашего случая это и «спасение» ценной дета­ли, и защита бюджета от немалых расходов при приобрете­нии очень дорогих компонентов.

Цепочка R15, С15 (рис.2 и рис.3) — это снаббер, т.е. дем­пфирующее устройство, не допускающее опасного перенапря­жения при закрывании ключа. На схемах рис.8 и рис.9 снаб­бер дополнен диодом VD11, заметно уменьшающим тепловые потери на резисторе снаббера.

Диод VD7 (рис.2, рис.3) необходим для работы с индук­тивной нагрузкой. Для токов в десятки и сотни ампер можно применить быстрый спаренный диод MURP20040CT фирмы Motorola (200 А, 400 В). Для меньших токов можно использо­вать менее мощные диоды, но они должны быть «быстрыми» — серии SF, UF. HER, FR (в порядке ухудшения быстродействия). Если нагрузка не индуктивная: нагреватели, гальванические ванны и др., то этот диод можно не устанавливать.

Фирма Semikron выпускает, как бы специально для на­шего случая, очень интересный IGBT-модуль SKM400GAL128D (рис.10), в состав которого входит, кроме обычного парал­лельного транзистору диода, еще один силовой диод, «вмес­то» «верхнего» транзистора. Использовать подобный модуль можно согласно схеме на рис.11. Кстати, на этой схеме по­казано, что питать устройство можно не только фазным на­пряжением сети, но и линейным, что позволяет получать ста­бильное регулируемое постоянное напряжение на выходе до 550 В и более.

Получить повышенное напряжение можно и от однофаз­ной сети, если воспользоваться удвоителем напряжения. Для этого (см. рис.11) нужно заменить один полумост (VD4) двумя оксидными конденсаторами, включенными последователь­но вместо диодов моста (аналогично включены С2, С3 на том же рисунке). В этом случае выпрямленное напряжение составит 640 В, но мощность всей установки будет ограни­чена емкостью этих конденсаторов.

В роли R1, ограничителя зарядного тока конденсаторов сетевого фильтра, должен быть резистор, способ­ный кратковременно выдержать сетевое напряже­ние без разрушения. Следует только заметить, что чем больше сопротивление этого резистора, тем меньше может быть его мощность, но тем доль­ше будут заряжаться конденсаторы С2, С3 до го­товности к работе. Ограничителем зарядного то­ка может быть лампа накаливания на напряже­ние 230 В, а лучше — две (рис.3). Конденсаторы С21, С22 вместе с диодным мостом VD12 на рис.12 служат для замены «энергоемкого» резистора в цепи питания схемы управления (R2 на рис.2), они должны быть рассчитаны на напряжение не ниже 350 В. Их емкость определяет ток через стабилитрон VD2 и, следовательно, степень его нагрева и каче­ства стабилизации. При большем токе стабильность напря­жения питания микросхемы улучшается, но возникает необ­ходимость использования радиатора для стабилитрона.

Улучшить параметры стабилизации без установки радиа­тора и защитить схему от наводимых помех, поможет вто­рая ступень стабилизации на стабилитроне VD3 (рис.11). Будет значительно лучше, если использовать интегральный стабилизатор DA1 (рис.12).

Но самым радикальным способом улучшения стабильно­сти работы устройства будет питание схемы управления от отдельного источника питания (AC/DC преобразователь на рис.3). В качестве последнего можно использовать заряд­ное устройство от старой «мобилки» с выходным напряже­нием 8.. 12 В. Автор встречал китайские «зарядки» с напря­жением более 16 В — такие тоже подходят. Гальваническую развязку обеспечивает трансформатор в зарядном устрой­стве. Дополнительная стабилизация напряжения источника, в этом случае, тоже не помешает. Важным условием пра­вильной работы схемы является последовательность вклю­чения источника питания микросхемы — только после заряда накопительных конденсаторов С2, С3, что обеспечивает дополнительная контакт­ная группа К1.2 контактора К1 (рис.2).

Назначение стабилитронов VD9, VD10 в измерительной цепи — ограничить «сни­зу» регулировку выходного напряжения. Дело в том, что трудно представить себе прикладное назначение подобного устрой­ства с регулировкой от нуля до 300 В. да­же лабораторные источники питания с та­кими возможностями вряд ли имеют смысл. Минимальное выходное напряжение источ­ника примерно соответствует напряжению стабилизации VD9 (VD10). Так если, на­пример, требуется напряжение в пределах 200…300 В, то в роли VD11 необходима сборка из трех стабилитронов на 65…70 В каждый, напри­мер BZX55C68. Д817Б или двух на 100В (BZX55C100, Д817Г). С высоковольтными стабилитронами нужно быть осторож­ным — при большом токе через них стабилитроны сильно гре­ются, а малого тока через них может не хватить для нор­мальной работы светодиода оптрона.

Ограничить «сверху» выходное напряжение поможет ус­тановка дополнительного резистора R16 в измерительной це­пи (рис.11).

Для индуктивной нагрузки (обмотка возбуждения элект­рической машины, электромагнит металлообрабатывающего станка и т.п.) конденсатор С16 не нужен. Индуктивность дрос­селя L2 должна быть не меньше 10 мГн для минимальной частоты преобразования в десятки герц (определяется пара­метрами элементов R8, R12, С11) и может быть уменьшена для более высоких частот. Кстати, «сложность» частотозада­ющей цепи (R8, R12. С11, VD13) определяется необходимо­стью сформировать «естественную» (без обратной связи) фор­му сигнала, отличающуюся от «меандра» (это — когда скважность равна двум, см. рис.1,а, Nom.), а сделать ее с боль­шим заполнением, близким к единице (рис.1,а, Мах).

Дроссель L1 не является необходимой деталью схемы, а служит лишь для улучшения коэффициента мощности (увели­чения cosφ), что требуют энергогенерирующие компании.

На потребительские свойства этот элемент не вли­яет (кроме ухудшения массо-габаритных показате­лей). Конструкция обоих дросселей (L1, L2) не име­ет особого значения, лишь бы они не насыщались при максимальном токе (они должны быть или очень большого геометрического размера, или с немагнит­ным зазором в магнитопроводе), сечение провода должно быть рассчитано на максимальный ток, а изоляция — на максимальное напряжение.

Читайте также:  Внутреннее наполнение и аксессуары для кухни

Конденсатор С14 имеет принципиальное значе­ние — он уменьшает наводимые помехи и замедляет процессы в цепях обратной связи а, следовательно, уменьшает частоту коммутации при стабилизации вы­ходного параметра. Дело в том, что IGBT ключи не «любят» работать на частотах в десятки килогерц — им «комфортнее» если частота переключения не вы­ше 10… 15 кГц (MOSFEET транзисторы могут работать на частотах в десятки раз больших). Качество стабилизации от этого немного ухудшается, но если «надеж­ность» не пустой звук для разработчика, то это того стоит.

Первое включение и настройка устройства

Очень важно! Рассматриваемые устройства не имеют гальванической развязки от сети 230 В / 50 Гц, т.е. все эле­менты находятся под опасным для человека напряжением.

Перед подачей сетевого напряжения желательно убедить­ся в исправности регулятора. Для этого от внешнего источника напряжением 8..15 В нужно запитать микросхему, си­ловую часть и регулятор RV1 по схеме рис.13. Роль нагруз­ки может играть автомобильная лампочка с мощностью, ко­торую может обеспечить временный источник питания. После сборки временной схемы и подачи напряже­ния, лампа должна загораться с максимальным накалом при перемещении движка RV1 вверх и должна притухать до минимума при перемещении движка RV1 вниз. Если так и есть, можно (после восстановления исходной схемы) подавать высо­кое напряжение.

Улучшение потребительских свойств преобразователя

Само собой разумеется, что питать схему мож­но не только непосредственно от сети 230 В / 50 Гц, а и через силовой разделительный трансформатор со вторичной обмоткой на нужное напряжение (от 30 до 400 В), который на схемах не показан.

На практике часто возникает необходимость в защите от экстремальных условий работы источника питания — перегрузки, короткого замыкания в нагрузке, перенапряжения и т.п. Предлагаемая разработка имеет неограниченные возможнос­ти модернизации. На рис.12 изображена схема с защитой от короткого замыкания в нагрузке — в случае превышения тока через датчик тока К3, срабатывает геркон (К3.1) и, свои­ми контактами, дает отпирающий импульс на управляющий электрод тиристора VS1, который, в свою очередь, блокирует таймер DA1 и зажигает лампу HL3. В таком положении схе­ма будет находиться до отключения питания и устранения не­исправности. Датчик тока К3 представляет собой провод или шину, свитые в спираль, вдоль оси которой и на­ходится геркон К3.1. Ре­гулировка чувствительно­сти датчика производит­ся продвижением геркона вдоль оси спирали. Для токов в единицы ам­пер эта спираль содержит десятки витков, для десятков ампер — единицы витков, а для тока в сотни ампер геркон располагается поперек токо­ведущей шины и регулируется поворотом на некоторый угол от перпендикуляра — самого чувствительного его положения.

Короткие замыкания в плюсовой шине нагрузки, как и питающих шинах, представляют собой особый вид замыка­ний, с которым трудно бороться. В этом случае (рис.11) дат­чик тока К3 в плюсовой шине питания защищает не столько нагрузку, сколько источник питания, диодный мост и контак­ты К1. От перегрузок спасет подобная защита в цепи отри­цательной шины нагрузки (рис.14), рассчитанная на отклю­чающий ток, незначительно превышающий номинальный (при­мерно на 15…20%). Тогда реле Кб заблокирует только тай­мер DA1 (перегруз), а реле К3, при коротком замыкании на землю, отключает контактор К2 и, следовательно, К1 (как на рис.11). Если неисправность не устранена, разряжаются на­копительные конденсаторы и загорается «сигнальная» лам­па HL2, которую можно сопроводить надписью «Авария» или «Неготовность».

Защитить устройство от коротких замыканий в нагрузке и других токовых нарушений так же может установка индук­тивности L4 в цепи эмиттера силового ключа (рис.12). В за­висимости от номинального тока установки число витков катушки L4 может быть от единиц до десятков (аналогично дат­чику тока К3 на рис.11), с сечением провода, заведомо боль­шим необходимого (рис.15). В нормальном режиме этот эле­мент (из-за своего ничтожного активного сопротивления) не оказывает существенного влияния на режим работы, а в слу­чае «форс-мажора» формирует сигнал управления для бло­кирующего транзистора VT2.

На рис.3 изображен способ реверсирования двигателя при помощи дополнительных контакторов К4 и К5 и комму­тационных элементов SB1… SB3, но делать это желательно после остановки двигателя или на малых оборотах.

Дополнительные дроссели L5, L6 на рис.14 кроме традици­онной функции сглаживания пульсаций обладают дополнитель­ными функциями — это дифференциальные датчики тока и тем­пературно-зависимые датчики тока. При коротком замыкании в нагрузке, скорость нарастания тока (di/dt) колоссальна и ЭДС наводимая в индуктивности возрастает раньше, чем ток до­стигнет опасных значений. Быстродействующая защита тоже сработает раньше и разрушений не будет — это дифференциаль­ная защита по току. А температурная защита основана на ис­пользовании высокого температурного коэффициента сопротив­ления меди. При увеличении температуры, сопротивление об­мотки увеличивается и это воспринимается датчиком тока, как увеличение тока, что приводит к его автоматическому сниже­нию и защите от перегрева других элементов схемы. От пере­напряжения в нагрузке (например, при пробое силового клю­ча VT1) может защитить реле высокого напряжения К7 (рис.8). После втягивания это реле остается под напряжением, даже если напряжение само нормализовалось — для выявления и устранения неисправности оперативным персоналом.

На рис.9 изображен еще один способ блокировки тайме­ра при аварии, с помощью геркона, аналогичный показанно­му на рис.12. Схема немного сложнее, но имеет большее быстродействие.

Автор: Александр Шуфотинский, г. Кривой Рог
Источник: журнал Электрик №9/2017

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock detector