Что является единицей напряженности электрического поля

Полем с электричеством называют особый вид материи. Он существует вокруг заряда либо вокруг заряженных частиц. Напряжённость – главная силовая характеристика для этого явления. Единица измерения – В/м. Но есть и другие особенности, присущие такому параметру. Формула напряжённости – отдельный вопрос.

Определение

Напряженность относят к величинам физического характера. Как уже говорилось, это силовой параметр. Равен обычно соотношению между силой, действующей на заряженное тело, и значением.

Важно. Показатель напряжённости относят и к векторным величинам. Определяют, с каким значением действует сила на заряженные предметы. При необходимости упрощает определение направления. Главная единица измерения – ньютон на кулон.

Определение напряжённости упрощает организацию измерения показателя. Если заранее знать значение энергии того или иного тела – проще измерить характеристику, воздействующую на него. Как найти напряжённость – объяснено дальше.

Формула силы электрического поля

В большинстве случаев учёные применяют стандартную формулу:

Своё значение вектора, который обозначается как E, существует в каждой отдельной временной точке. В форме записи этот показатель тоже имеет свою фиксацию:

Интересно. Таким образом, это функция пространственных координат. Допустимо изменение характеристики по мере течения времени. За счёт этого происходит образование электромагнитного поля, учитывающего и вектор магнитной индукции. Его регулируют законы термодинамики, то же касается напряжённости электрического поля, формула через заряды тоже давно известна.

Воздействие поля на заряды

При воздействии полей предполагается, что в полную силу входят магнитные и электрические составляющие. Она выражается в так называемой формуле по силе Лоренца:

Своим значением наделён каждый элемент в этом определении напряжённости электрического поля, формула без них не будет точной:

  1. Q – обозначение заряда.
  2. V – скорость.
  3. B – вектор относительно магнитной индукции. Это основная характеристика, присущая магнитному пространству. Без неё измерять нельзя.

Косой крест применяют для обозначения векторного произведения. Единицы измерения для формулы – СИ. Заряды тоже становятся частью общей системы.

Новые значения – более общие по сравнению с формулой, чьё описание приведено ранее. Причина – в том, что частица под воздействием сил.

Обратите внимание. Предполагается, что частица в этом случае – точечная. Но благодаря этой формуле просто определить воздействие на тела вне зависимости от текущей формы. При этом распределение зарядов и токов внутри не имеет значения. Главное – уметь рассчитывать E и B, чтобы применять формулу правильно. Тогда проще проводить и определение напряжённости поля, формулы с другими цифрами.

Измерение

Напряжённость относят к векторным величинам, оказывающим силовое воздействие на заряженные частицы.

Существуют не только теоретические, но и практические способы для измерения напряжённости.

  • Если речь о произвольных – сначала берут тело, содержащее заряд. Это правило распространяется на любые электронные устройства.

Размеры тела должны быть меньше размеров другого тела, генерирующего заряд. Достаточно небольшого металлического шарика, у которого есть свой заряд. Заряд шарика измеряют электрометром, потом приспособление помещают внутрь. Динамометр уравновешивает силу, воздействующую на предмет. После этого можно снять показания с единицей измерения – Ньютонами.

Значение напряжённости получают, разделив значение силы на величину заряда.

  • Измерить расстояние – первый шаг, когда определяют напряжённость в конкретной точке, удалённой от тела на какую-либо величину.

Полученную величину разделяют на расстояние, возведённое в квадрат. К полученному результату применяют специальный коэффициент. Его выражение такое: 9*10^9.

  • Отдельного изучения заслуживает ситуация с конденсаторами.

В данном случае первый этап – измерение напряжения между пластинами. Предполагается использование вольтметра. Потом определяются с расстоянием между этими пластинами. Единица измерения – метры. Получают результат, который и будет напряжённостью. Направлять её можно по-разному.

Единицы измерения

Ньютоны на кулон, либо вольты на метр – единицы измерения, которые применяют для данного параметра в общепринятых системах.

Постоянный электрический ток

Электрический ток – направленное движение свободных носителей энергии в веществе или внутри вакуума. Этот показатель появляется при соблюдении главных условий:

  • Есть источник энергии.
  • Замкнутость пути, который используется для перемещения.
Читайте также:  Что такое бамбуковые обои

I – буква, которую применяют для обозначения силы тока.

Важно. Единица измерения – Амперы. Величина тока зависит от количества электричества или разрядов, которые проходят через поперечное сечение у проводника в единицу времени.

Когда речь о постоянном токе – предполагается, что с течением времени не меняются его направление, основная величина.

Амперметр – устройство, применяемое для измерения силы тока. Его подключение к цепи – последовательное. Показатель важен, поскольку от него зависят и сила воздействия и другие подобные параметры. На практике часто встречаются ситуации, когда сила тока заменяется плотностью. В данном случае единица измерения – Ампер на метр квадратный. Площадь сечения проводов выражается в мм 2 . И плотность тока предполагает опору на эту характеристику.

Электрическое поле можно назвать реально существующим явлением, как и любые предметы. Поле и вещества относят к основным формам существования материи. Способность действовать с силой на заряды – главное свойство. Его используют, чтобы обнаруживать, измерять явления. Ещё одна характеристика – распространение со скоростью света. Это тоже важно для тех, кто занимается изучением подобных факторов.

Из сказанного выше ясно, что напряженность электрического поля — одна из основных фундаментальных величин классической электродинамики. В этой области физики можно назвать сопоставимыми с ней по значению только вектор магнитной индукции (вместе с вектором напряженности электрического поля образующий тензор электромагнитного поля) и электрический заряд. С некоторой точки зрения столь же важными представляются потенциалы электромагнитного поля (образующие вместе единый электромагнитный потенциал).

  • Остальные понятия и величины классической электродинамики, такие как электрический ток, плотность тока, плотность заряда, вектор поляризации, а также вспомогательные поле электрической индукции и напряженность магнитного поля — хотя достаточно важны и значимы, но их значение гораздо меньше, и по сути могут считаться полезными и содержательными, но вспомогательными величинами.

Приведем краткий обзор основных контекстов классической электродинамики в отношении напряженности электрического поля.

Сила, с которой действует электромагнитное поле на заряженные частицы

Полная сила, с которой электромагнитное поле (включающее вообще говоря электрическую и магнитную составляющие) действует на заряженную частицу, выражается формулой силы Лоренца:

где q — электрический заряд частицы, — ее скорость, — вектор магнитной индукции (основная характеристика магнитного поля), косым крестом обозначено векторное произведение. Формула приведена в единицах СИ.

Как видим, эта формула полностью согласуется с определением напряженности электрического поля, данном в начале статьи, но является более общей, т.к. включает в себя также действие на заряженную частицу (если та движется) со стороны магнитного поля.

В этой формуле частица предполагается точечной. Однако эта формула позволяет рассчитать и силы, действующие со стороны электромагнитного поля на тела любой формы с любым распределением зарядов и токов — надо только воспользоваться обычным для физики приемом разбиения сложного тела на маленькие (математически — бесконечно маленькие) части, каждая из которых может считаться точечной и таким образом входящей в область применимости формулы.

Остальные формулы, применяемые для расчета электромагнитных сил (такие, как, например, формула силы Ампера) можно считать следствиями [5] фундаментальной формулы силы Лоренца, частными случаями ее применения итп.

Однако для того, чтобы эта формула была применена (даже в самых простых случаях, таких, как расчет силы взаимодействия двух точечных зарядов), необходимо знать (уметь рассчитывать) и чему посвящены следующие параграфы.

Уравнения Максвелла

Достаточным вместе с формулой силы Лоренца теоретическим фундаментом классической электродинамики являются уравнения электромагнитного поля, называемые уравнениями Максвелла. Их стандартная традиционная форма представляет собой четыре уравнения, в три из которых входит вектор напряженности электрического поля:

Здесь — плотность заряда, — плотность тока, — универсальные константы (уравнения здесь записаны в единицах СИ).

Здесь приведена наиболее фундаментальная и простая форма уравнений Максвелла — так называемые "уравнения для вакуума" (хотя, вопреки названию, они вполне применимы и для описания поведения электромагнитного поля в среде). Подробно о других формах записи уравнений Максвелла — см. основную статью.

Этих четырех уравнений вместе с пятым — уравнением силы Лоренца — в принципе достаточно, чтобы полностью описать классическую (то есть не квантовую) электродинамику, то есть они представляют ее полные законы. Для решения конкретных реальных задач с их помощью необходимы еще уравнения движения "материальных частиц" (в классической механике это законы Ньютона), а также зачастую дополнительная информация о конкретных свойствах физических тел и сред, участвующих в рассмотрении (их упругости, электропроводности, поляризуемости итд итп), а также о других силах, участвующих в задаче (например, о гравитации), однако вся эта информация уже не входит в рамки электродинамики как таковой, хотя и оказывается зачастую необходимой для построения замкнутой системы уравнений, позволяющих решить ту или иную конкретную задачу в целом.

Читайте также:  Система элеваторного узла без сопла

«Материальные уравнения»

Такими дополнительными формулами или уравнениями (обычно не точными, а приближенными, зачастую всего лишь эмпирическими), которые не входят непосредственно в область электродинамики, но поневоле используются в ней ради решения конкретных практических задач, называемыми «материальными уравнениями», являются, в частности:

  • Закон Ома,
  • Закон поляризации
  • в разных случаях многие другие формулы и соотношения.

Связь с потенциалами

Связь напряженности электрического поля с потенциалами в общем случае такова:

где — скалярный и векторный потенциалы. Приведем здесь для полноты картины и соответствующее выражение для вектора магнитной индукции:

В частном случае стационарных (не меняющихся со временем) полей, первое уравнение упрощается до:

Это выражение для связи электростатического поля с электростатическим потенциалом.

Электростатика

Важным с практической и с теоретической точек зрения частным случаем в электродинамике является тот случай, когда заряженные тела неподвижны (например, если исследуется состояние равновесия) или скорость их движения достаточно мала чтобы можно было приближенно воспользоваться теми способами расчета, которые справедливы для неподвижных тел. Этим частным случаем занимается раздел электродинамики, называемый электростатикой.

Как мы уже заметили выше, напряженность электрического поля в этом случае выражается через скалярный потенциал как

то есть электростатическое поле оказывается потенциальным полем. ( в этом случае — случае электростатики — принято называть электростатическим потенциалом).

  • Также и обратно

Уравнения поля (уравнения Максвелла) при этом также сильно упрощаются (уравнения с магнитным полем можно исключить, а в уравнение с дивергенцией можно подставить ) и сводятся к уравнению Пуассона:

а в областях, свободных от заряженных частиц — к уравнению Лапласа:

Учитывая линейность этих уравнений, а следовательно применимость к ним принципа суперпозиции, достаточно найти поле одного точечного единичного заряда, чтобы потом найти потенциал или напряженность поля, создаваемого любым распределением зарядов (суммируя решения для точечного заряда).

Теорема Гаусса

Очень полезной в электростатике оказывается теорема Гаусса, содержание которой сводится к интегральной форме единственного нетривиального для электростатики уравнения Максвелла:

где интегрирование производится по любой замкнутой поверхности S (вычисляя поток через эту поверхность), Q — полный (суммарный) заряд внутри этой поверхности.

Эта теорема дает крайне простой и удобный способ расчета напряженности электрического поля в случае, когда источники имеют достаточно высокую симметрию, а именно сферическую, цилиндрическую или зеркальную+трансляционную. В частности, таким способом легко находится поле точечного заряда, сферы, цилиндра, плоскости.

Напряжённость электрического поля точечного заряда

В единицах СИ

Для точечного заряда в электростатике верен закона Кулона

. .

Исторически закон Кулона был открыт первым, хотя с теоретической точки зрения уравнения Максвелла более фундаментальны. С этой точки зрения он является их следствием. Получить этот результат проще всего исходя из теоремы Гаусса, учитывая сферическую симметрию задачи: выбрать поверхность S в виде сферы с центром в точечном заряде, учесть, что направление будет очевидно радиальным, а модуль этого вектора одинаков везде на выбранной сфере (так что E можно вынести за знак интеграла), и тогда, учитывая формулу для площади сферы радиуса r: , имеем:

откуда сразу получаем ответ для E.

Ответ для получается тогда интегрированием E:

Для системы СГС

Формулы и их вывод аналогичны, отличие от СИ лишь в константах.

Напряженность электрического поля произвольного распределения зарядов

По принципу суперпозиции для напряженности поля совокупности дискретных источников имеем:

Для непрерывного распределения аналогично:

где V — область пространства, где расположены заряды (ненулевая плотность заряда), или всё пространство, — радиус-вектор точки, для которой считаем , — радиус-вектор источника, пробегающий все точки области V при интегрировании, dV — элемент объема. Можно подставить x,y,z вместо , вместо , вместо dV.

Читайте также:  Интерьер спальни с темной мебелью венге фото

Системы единиц

В системе СГС напряжённость электрического поля измеряется в СГСЭ единицах, в системе СИ — в ньютонах на кулон или в вольтах на метр (русское В/м, международное V/m).

Основные свойства и характеристики

Электрическое поле (статическое)поле неподвижных, электрически заряженных тел, заряды которых не изменяются во времени.

Электрическое поле обнаруживается как силовое взаимодействие заряженных тел.

При этом различают положительные и отрицательные заряды. (виды зарядов)

Заряды одного знака отталкиваются друг от друга, разного знака притягиваются. (взаимодействие зарядов)

В основе описания свойств электрического поля лежит закон Кулона, установленный опытным путем.

Закон Кулона. Между покоящимися точечными зарядами действует сила, пропорциональная произведению зарядов, обратно пропорциональная квадрату расстояния между ними и направленная по прямой от одного заряда к другому (рис. 1.1):

(1.1)

где F, — сила, действующая на заряд q

r 21 — единичный вектор, направленный от второго заряда к первому;

е = 8,854 • 10- 12 Ф/м — электрическая постоянная.

Точечными зарядами можно считать заряженные тела, размеры которых малы по сравнению с расстоянием между ними.

силы в международной системе единиц (СИ)ньютон (Н);

зарядакулон (Кл): 1 Кл = 1 А • с;

Основными величинами, характеризующими электрическое поле, являются

электрический потенциал и

разность потенциалов, или напряжение

Напряженностью электрического поля называется мера интенсивности его сил, равная отношению силы F, действующей на пробный положительный точечный заряд q, вносимый в рассматриваемую точку поля, к значению заряда

(1.2)

Так же как и сила F, напряженность электрического поля ε — векторная величина, т.е. характеризуется значением и направлением действия.

Основная единица измерения напряженности электрического поля в СИвольт на метр (В/м).

Из формулы (1.1) следует, что напряженность электрического поля точечного заряда q на расстоянии r от него равна

(1-3)

и направлена от точки расположения заряда к точке, где определяется напряженность, если заряд положительный (рис. 1.2, а),

Рис. 1.2, а

и в противоположную сторону, если заряд отрицательный (рис. 1.2, б).

1.2 б

Если зарядов, создающих электрическое поле, несколько, то напряженность в любой точке поля равна геометрической сумме напряженностей от каждого из них в отдельности. (напряженность электростатического поля нескольких зарядов)

Пример 1.1. Определить значение и направление действия напряженности электрического поля в точке А, расположенной на расстояниях r1 = 1м и r2 = 2м от точечных зарядов

Решение. По формуле (1.3) определяем напряженности электрического поля в точке А от действия "точечных зарядов q1= и q2

Направления векторов напряженности совпадают с направлениями действия сил на пробный положительный точечный заряд, если его расположить в точке А.

Напряжённость результирующего электрического поля в точке А направлена вдоль гипотенузы прямоугольного треугольника, катетами которого являются векторы напряженностей и имеет значение

Можно говорить о поле вектора и изображать это поле линиями вектора — силовыми линиями.

Если напряженность электрического поля во всех точках одинакова, то поле однородное, например поле равномерно заряженной плоской пластины бесконечных размеров (рис. 1.4),

а если различна, то поле неоднородно, например поле двух точечных зарядов (рис. 1.5).

При перемещении вдоль произвольного участка длиной заряда q в электрическом поле под действием сил поля F совершается работа

При этом работа по переносу заряда вдоль произвольного замкнутого контура равна нулю.

Действительно, так как все свойства поля определяются относительным расположением зарядов, то перенос заряда по замкнутому контуру и возвращению в исходную точку означает первоначальные распределение зарядов и запас энергии. Это означает также, что с учетом (1.4) циркуляция вектора напряженности равна нулю

Условие (1.5) позволяет характеризовать электрическое поле в каждой точке функцией ее координат — электрическим потенциалом.

Электрический потенциал в данной точке электрического поля с учетом (1.4) численно равен работе, которую могут совершить силы электрического поля при переносе единичного положительного заряда из данной точки в точку, потенциал которой принят равным нулю.

Разность потенциалов двух точек 1 и 2, или напряжение между точками 1 и 2, электрического поля

(1.7)

численно равна работе, которую могут совершить силы электрического поля при переносе единичного положительного заряда из точки 1 в точку 2.

Единица измерения электрического потенциала в СИвольт (В).

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock detector