Число оборотов трехфазного двигателя

Под скоростью вращения асинхронного электродвигателя обычно понимают угловую частоту вращения его ротора, которая приведена на шильдике (на паспортной табличке двигателя) в виде количества оборотов в минуту. Трехфазный двигатель можно питать и от однофазной сети, для этого достаточно добавить конденсатор параллельно одной или двум его обмоткам, в зависимости от напряжения сети, но конструкция двигателя от этого не изменится.

Так, если ротор под нагрузкой совершает 2760 оборотов в минуту, то угловая частота данного двигателя будет равна 2760*2пи/60 радиан в секунду, то есть 289 рад/с, что не удобно для восприятия, поэтому на табличке пишут просто «2760 об/мин». Применительно к асинхронному электродвигателю, это обороты с учетом скольжения s.

Синхронная же скорость данного двигателя (без учета скольжения) будет равна 3000 оборотов в минуту, поскольку при питании обмоток статора сетевым током с частотой 50 Гц, каждую секунду магнитный поток будет совершать по 50 полных циклических изменений, а 50*60 = 3000, вот и получается 3000 оборотов в минуту — синхронная скорость асинхронного электродвигателя.

В рамках данной статьи мы поговорим о том, как определить синхронную скорость вращения неизвестного асинхронного трехфазного двигателя, просто взглянув на его статор. По внешнему виду статора, по расположению обмоток, по количеству пазов, — можно легко определить синхронные обороты электродвигателя если у вас нет под рукой тахометра. Итак, начнем по порядку и разберем данный вопрос с примерами.

3000 оборотов в минуту

Про асинхронные электродвигатели (смотрите — Виды электродвигателей) принято говорить, что тот или иной двигатель имеет одну, две, три или четыре пары полюсов. Минимум — одна пара полюсов, то есть минимум — два полюса. Взгляните на рисунок. Здесь вы видите, что в статор уложено по две последовательно соединенные катушки на каждую фазу — в каждой паре катушек одна расположена напротив другой. Эти катушки и образуют по паре полюсов на статоре.

Одна из фаз показана для ясности красным цветом, вторая — зеленым, третья — черным. Обмотки всех трех фаз устроены одинаково. Поскольку три эти обмотки питаются по очереди (ток трехфазный), то за 1 колебание из 50 в каждой из фаз — магнитный поток статора один раз обернется на полные 360 градусов, то есть совершит один оборот за 1/50 секунды, значит 50 оборотов получится за секунду. Так и выходит 3000 оборотов в минуту.

Таким образом становится ясно, что для определения синхронных оборотов асинхронного электродвигателя достаточно определить количество пар его полюсов, что легко сделать, сняв крышку и взглянув на статор.

Общее число пазов статора разделите на число пазов, приходящихся на одну секцию обмотки одной из фаз. Если получится 2, то перед вами двигатель с двумя полюсами — с одной парой полюсов. Следовательно синхронная частота составляет 3000 оборотов в минуту или примерно 2910 с учетом скольжения. В простейшем случае 12 пазов, по 6 пазов на катушку, и таких катушек 6 — по две на каждую из трех фаз.

Обратите внимание, количество катушек в одной группе для одной пары полюсов может быть не обязательно 1, но и 2 и 3, однако для примера мы рассмотрели вариант с одиночными группами на пару катушек (не будем в рамках данной статьи заострять внимание на способах намотки).

1500 оборотов в минуту

Для получения синхронной скорости в 1500 оборотов в минуту, количество полюсов статора увеличивают вдвое, чтобы за 1 колебание из 50 магнитный поток совершил бы только пол оборота — 180 градусов.

Для этого на каждую фазу делают по 4 секции обмотки. Таким образом, если одна катушка занимает четверть всех пазов, то перед вами двигатель с двумя парами полюсов, образованными четырьмя катушками на фазу.

Например, 6 пазов из 24 занимает одна катушка или 12 из 48, значит перед вами двигатель с синхронной частотой 1500 оборотов в минуту, или с учетом скольжения примерно 1350 оборотов в минуту. На приведенном фото каждая секция обмотки выполнена в виде двойной катушечной группы.

1000 оборотов в минуту

Как вы уже поняли, для получения синхронной частоты в 1000 оборотов в минуту, каждая фаза образует уже три пары полюсов, чтобы за одно колебание из 50 (герц) магнитный поток обернулся бы всего на 120 градусов, и соответствующим образом повернул бы за собой ротор.

Таким образом, минимум 18 катушек установлены на статор, причем каждая катушка занимает шестую часть всех пазов (по шесть катушек на фазу — по три пары). Например, если пазов 24, то одна катушка займет 4 из них. Получится частота с учетом скольжения около 935 оборотов в минуту.

750 оборотов в минуту

Для получения синхронной скорости в 750 оборотов в минуту, необходимо, чтобы три фазы формировали на статоре четыре пары движущихся полюсов, это по 8 катушек на фазу — одна напротив другой — 8 полюсов. Если например на 48 пазов приходится по катушке на каждые 6 пазов — перед вами асинхронный двигатель с синхронными оборотами 750 (или около 730 с учетом скольжения).

500 оборотов в минуту

Наконец, для получения асинхронного двигателя с синхронной скоростью в 500 оборотов в минуту необходимо 6 пар полюсов — по 12 катушек (полюсов) на фазу, чтобы на каждое колебание сети магнитный поток поворачивался бы на 60 градусов. То есть, если например статор имеет 36 пазов, при этом на катушку приходится по 4 паза — перед вами трехфазный двигатель на 500 оборотов в минуту (480 с учетом скольжения).

Читайте также:  Водонагреватели 30 литров с сухим теном цена

Здравствуйте, уважаемые посетители сайта http://zametkielectrika.ru.

Электрические машины переменного тока нашли широкое распространение, как в сфере промышленности (шаровые мельницы, дробилки, вентиляторы, компрессоры), так и в домашних условиях (сверлильный и наждачный станки, циркулярная пила).

Основная их часть является бесколлекторными машинами, которые в свою очередь разделяются на асинхронные и синхронные.

Асинхронные и синхронные электрические машины обладают одним замечательным свойством под названием обратимость, т.е. они могут работать как в двигательном режиме, так и в генераторном.

Но чтобы дальше перейти к более подробному их рассмотрению и изучению, необходимо знать принцип их работы. Поэтому в сегодняшней статье я расскажу Вам про принцип работы асинхронного двигателя. После прочтения данного материала Вы узнаете про электромагнитные процессы, протекающие в электродвигателях.

Принцип работы трехфазного асинхронного двигателя

С устройством асинхронного двигателя мы уже знакомились, поэтому повторяться второй раз не будем. Кому интересно, то переходите по ссылочке и читайте.

При подключении асинхронного двигателя в сеть необходимо его обмотки соединить звездой или треугольником. Если вдруг на выводах в клеммнике отсутствует маркировка, то необходимо самостоятельно определить начала и концы обмоток электродвигателя.

При включении обмоток статора асинхронного двигателя в сеть трехфазного переменного напряжения образуется вращающееся магнитное поле статора, которое имеет частоту вращения n1. Частота его вращения определяется по следующей формуле:

  • f — частота питающей сети, Гц
  • р — число пар полюсов

Это вращающееся магнитное поле статора пронизывает, как обмотку статора, так и обмотку ротора, и индуцирует (наводит) в них ЭДС (Е1 и Е2). В обмотке статора наводится ЭДС самоиндукции (Е1), которая направлена навстречу приложенному напряжению сети и ограничивает величину тока в обмотке статора.

Как Вы уже знаете, обмотка ротора замкнута накоротко, у электродвигателей с короткозамкнутым ротором, или через сопротивление, у электродвигателей с фазным ротором, поэтому под действием ЭДС ротора (Е2) в ней появляется ток. Так вот взаимодействие индуцируемого тока в обмотке ротора с вращающимся магнитным полем статора создает электромагнитную силу Fэм.

Направление электромагнитной силы Fэм можно легко найти по правилу левой руки.

Правило левой руки для определения направления электромагнитной силы

На рисунке ниже показан принцип работы асинхронного двигателя. Полюса вращающегося магнитного поля статора в определенный период обозначены N1 и S1. Эти полюса в нашем случае вращаются против часовой стрелки. И в другой момент времени они будут находится в другом пространственном положении. Т.е. мы как бы зафиксировали (остановили) время и видим следующую картину.

Токи в обмотках статора и ротора изображены в виде крестиков и точек. Поясню. Если стоит крестик, то значит ток в этой обмотке направлен от нас. И наоборот, если точка, то ток в этой обмотке направлен к нам. Пунктирными линиями показаны силовые магнитные линии вращающегося магнитного поля статора.

Устанавливаем ладонь руки так, чтобы силовые магнитные линии входили в нашу ладонь. Вытянутые 4 пальца нужно направить вдоль направления тока в обмотке. Отведенный большой палец покажет нам направление электромагнитной силы Fэм для конкретного проводника с током.

На рисунке показаны только две силы Fэм, которые создаются от проводников ротора с током, направленным от нас (крестик) и к нам (точка). И как мы видим, электромагнитные силы Fэм пытаются повернуть ротор в сторону вращения вращающегося магнитного поля статора.

Поясняющий рисунок для определения электромагнитной силы Fэм для проводника с током, который направлен от нас (крестик).

Поясняющий рисунок для определения электромагнитной силы Fэм для проводника с током, который направлен к нам (точка).

Совокупность этих электромагнитных сил от каждого проводника с током создает общий электромагнитный момент М, который приводит во вращение вал электродвигателя с частотой n.

Отсюда и произошло название асинхронный двигатель. Частота вращения ротора n всегда меньше частоты вращающегося магнитного поля статора n1, т.е. отстает от нее. Для определения величины отставания введен термин «скольжение», который определяется по следующей формуле:

Выразим из этой формулы частоту вращения ротора:

Пример расчета частоты вращения двигателя

Например, у меня есть двигатель типа АИР71А4У2 мощностью 0,55 (кВт):

  • число пар полюсов у него равно 4 (2р=4, р=2)
  • частота вращения ротора составляет 1360 (об/мин)

Определим частоту вращения поля статора этого двигателя при частоте питающей сети 50 (Гц):

Найдем величину скольжения для этого двигателя:

Кстати, направление движения вращающегося магнитного поля статора, а следовательно, и направление вращения вала электродвигателя, можно изменить. Для этого необходимо поменять местами любые два вывода источника питающего трехфазного напряжения. Об этом я упоминал Вам в статьях про реверс электродвигателя и чередование фаз.

Принцип работы асинхронного двигателя. Выводы

Зная принцип работы асинхронного двигателя, можно сделать вывод, что электрическая энергия преобразуется в механическую энергию вращения вала электродвигателя.

Частота вращения магнитного поля статора, а следовательно и ротора, напрямую зависит от числа пар полюсов и частоты питающей сети. Если число пар полюсов ограничивается типом двигателя (р = 1, 2, 3 и 4), то частоту питающей сети можно изменить в большем диапазоне, например, с помощью частотного преобразователя.

Если в нашем примере частоту питающей сети увеличить всего на 10 (Гц), то частота вращения магнитного поля статора увеличится на 300 (об/мин).

Опыт по установке и монтажу частотных преобразователей у меня есть, но не большой. Несколько лет назад на городском водоканале мы проводили замену двух высоковольтных двигателей насосов холодной воды на низковольтные двигатели с частотными преобразователями. Но это уже отдельная тема для разговора. Сейчас покажу Вам несколько фотографий.

Читайте также:  Пуловер платочной вязкой спицами с описанием

Вот фотография старого высоковольтного двигателя напряжением 6 (кВ).

А это новые двигатели напряжением 400 (В), установленные вместо старых высоковольтных.

Вот шкафы частотных преобразователей. На каждый двигатель свой шкаф. К сожалению, изнутри сфотографировать не успел.

Подписывайтесь на рассылку новостей с моего сайта, чтобы не пропустить самое интересное. В ближайшее время я расскажу Вам про пуск и способы регулирования частоты вращения трехфазных асинхронных двигателей двигателей, схемы их подключения и многое другое.

Трехфазный асинхронный двигатель

Целью работы является изучение работы асинхронного двигателя с короткозамкнутым ротором и снятие его механической и рабочей характеристик.

Краткие теоретические сведения

Простота конструкции, надежность в работе, экономичность и невысокая стоимость являются основными причинами широкого использования асинхронных двигателей в промышленности.

Частота вращения магнитного поля статора n1 определяется по формуле

n1 = , об/мин (1)

где f1 — частота сети, Гц;

р — число пар полюсов.

Разность в частотах вращения ротора n2 и поля статора n1 выражают скольжением

s = (2)

Скольжение возрастает с увеличением нагрузки на валу двигателя. У современных двигателей в зависимости от серии и назначения скольжение при номинальной нагрузке составляет 2…8%. При холостом ходе скольжение составляет всего 0,1…0,3%.

Если считать скольжение при номинальной нагрузке s н равным 5%, то можно указать частоты вращения ротора асинхронных двигателей при питании от сети с f = 50 Гц.

Частота вращения при s н = 5% Число пар полюсов на статоре
Поля статора n1, обмин
Ротора n2, обмин

Асинхронные двигатели малой и средней мощности, благодаря возможности соединения обмоток статора по схеме Y/Δ или Δ/ Y, могут работать при питании от двух соответствующих напряжений 380/220 В.

На заводском щитке двигателя это обозначается как

Простейшим способом пуска в ход двигателя с короткозамкнутым ротором и номинальной мощностью до 100 кВт является непосредственное включение обмотки статора в трехфазную цепь.

Частота вращения ротора двигателя может быть выражена формулой

n1 = (1– s 1), об/мин. (3)

Электрическая мощность Р1, потребляемая асинхронным двигателем от сети, расходуется на полезную мощность Р2 на валу и потери мощности на нагрев обмоток статора и ротора ΔРэ1 и ΔРэ2, потери в магнитопроводе статора и в стали ротора от вихревых токов и на гистерезис ΔРст и на потери от трения в подшипниках ΔРтр.

Таким образом,баланс мощности в двигателе выразится так

Активная мощность двигателя, потребляемая из сети, вычисляется по формуле

где Р = UI1 – мощность одной фазы, измеренная ваттметром, Вт.

Механическая мощность, развиваемая на валу двигателя, Рмех складывается из полезной мощности на валу Р2 и потерь на трение Ртр

Механическая мощность может быть определена по формуле

где М – вращающий момент, Нм;

n2 – частота вращения ротора, обмин.

Магнитные потери в магнитопроводе статора, т.е. потери в стали ΔРст, практически не изменяются при увеличении нагрузки на валу Р2 и называются постоянными.

С другой стороны, потери на нагрев обмоток статора и ротора, т.е. потери в меди ΔРэ зависят от нагрузки и называются переменными.

Коэффициент полезного действия асинхронного двигателя η определяется как отношение полезной мощности на валу Р2 к потребляемой из сети Р1

η = = (8)

Полезная мощность двигателя на валу Р2 может быть определена по формуле

Р2 = М ∙ ω = М, Вт (9)

η = = = , (11)

где U, В; I, А; Cos φф – напряжение, ток и коэффициент мощности фазы двигателя.

Р1 – потребляемая активная мощность двигателя.

Коэффициент мощности Cos φф зависит от нагрузки на валу двигателя и определяется отношением активной мощности к полной мощности фазы статора двигателя

Cos φф = = (12)

В лабораторной работе коэффициент мощности Cos φ измеряется непосредственно фазометром, а также может быть вычислен по показаниям ваттметра, вольтметра и амперметра, включенных в фазу двигателя (рис.1).

Основной характеристикой асинхронного двигателя, называемой механической, является зависимость n2 = f (M), т.е. зависимость частоты вращения ротора двигателя от вращающего момента (рис.1).

Рис.1. Механическая характеристика асинхронного двигателя.

Вращающий момент асинхронного двигателя определяют по формуле

М = , Нм (13)

где U – фазное напряжение обмотки статора, В;

n1 – синхронная частота вращения магнитного поля статора, об/мин;

р – число пар полюсов;

R1, R2 ’ , Хк – параметры схемы замещения асинхронного двигателя, Ом (рис.2).

Рис.2. Схема замещения асинхронного двигателя.

Вращающий момент асинхронного двигателя в лабораторной работе измеряется по щкале электромагнитного тормоза, соединенного с валом двигателя, в г∙см (1 Нм = 9800 г∙см).

Вращающий момент асинхронного двигателя зависит от величины подводимого к фазе статора напряжения в квадрате , скольжения s, частоты тока в статоре f1 и конструктивных параметров двигателя (числа пар полюсов, активного сопротивления обмоток двигателя и т.д.).

Меняя значение скольжения s при остальных постоянных в формуле вращающего момента можно получить различные значения моментов Мн, Мкр, Мп , показанных на естественной механической характеристике (рис.1) .

Номинальный вращающий момент Мн может быть определен по формулам

Мн = 9,55 , Нм (14)

Мн = 9,55 , Нм (15)

Наиболее полно и наглядно свойства асинхронного двигателя выявляются с помощью рабочих характеристик.

К рабочим характеристикам относятся зависимость частоты вращения ротора n2, вращающего момента М, скольжения s тока фазы статора I, коэффициента мощности Сos φ и к.п.д. двигателя от полезной мощности на валу Р2 при U1 = Const и f1 = Const.

При повышении Р2 величина скольжения s увеличивается, т.к. при увеличении нагрузки на валу частота вращения ротора уменьшается (рис.3).

Читайте также:  Сваг ассиметричный с провисом

Рис.3. Зависисмость величины скольжения от полезной мощности на валу.

При холостом ходе, когда Р2 = 0 , частота вращения ротора n2 может быть принята равной частоте вращения магнитного поля статора n1 и s = 0.

Рис.4. Механическая характеристика асинхронного двигателя.

Вращающий момент М на валу ротора можно считать состоящим из полезного момента, расходуемого на совершение полезной работы, и момента холостого хода М, расходуемого на преодоление трения. Эта доля вращающего момента практически не зависит от нагрузки на валу Р2.

Таким образом, можно считать, что М. Если бы частота вращения ротора была постоянной, то рабочая характеристика была бы линейно возрастающей. В действительности же частота вращения ротора n2 уменьшается при увеличении Р2, в связи с этим характеристика М = f (Р2) нелинейна и вращающий момент М быстро нарастает с увеличением Р2 (рис.5).

Если не учитывать ток холостого хода двигателя, составляющий 7…8% от I , то ток в фазе статора пропорционален полезной мощности Р2 и увеличивается при ее повышении. При холостом ходе Р2 = 0 и I = I10 (рис. 5).

При холостом ходе двигателя коэффициент мощности Cos φ двигателя мал и обычно не превышает 0,2, но затем при увеличении нагрузки на валу Р2 он быстро растет и достигает максимума при мощности, близкой к номинальной (рис. 6). Это происходит потому, что при возрастании нагрузки активная мощность Р1, потребляемая из сети, увеличивается, а реактивная мощность Q1 почти не изменяется. Вследствие этого главный магнитный поток практически остается постоянным. При нагрузках больше номинальных Cos φ снижается в связи со значительным ростом реактивных мощностей, связанных с влиянием потоков рассеяния.

Анализируя зависимость η = f (Р2) , можно видеть, что при изменении нагрузки на валу Р2 постоянные потери ΔРтр и ΔРст практически не изменяются, а начальный момент увеличение потерь в активном сопротивлении обмоток ΔРэ значительно меньше роста полезной мощности на валу. При Р2 = Р постоянные потери ΔРтр и ΔРст становятся равными переменным ΔРэ , а доля потерь в энергетическом балансе уже становится соизмеримой с Р2 . Вследствие этого к.п.д. начинает несколько уменьшаться (рис. 7).

План работы.

1. Ознакомиться с конструкцией асинхронного двигателя, типами измерительных приборов, устройством электромагнитного тормоза. В форму, предусмотренную отчетом по лабораторной работе, записать технические данные используемых приборов и электрооборудования.

2. Собрать электрическую схему (рис. 8) и предъявить ее для проверки преподавателю или лаборанту.

3. После проверки схемы поставить регулятор автотрансформатора (АТ) в положение «0» и включить выпрямитель.

4. Включить фототахометр и нажать кнопку «Пуск» на электрическом стенде.

5. При помощи автотрансформатора (АТ) изменить момент сопротивления электромагнитного тормоза в пределах 0…0,01 Нм (0,100.200,300,400,500,600,700,800,900,1000 г∙см).

6. Измерить по приборам следующие величины: напряжение на фазе двигателя U по вольтметру V, ток в фазе I по амперметру А1, потребляемую фазой двигателя активную мощность P по ваттметру W, частоту вращения ротора n по фототахометру.

Измерения произвести для 11 различных моментов сопротивления на валу двигателя.

Данные опытов внести в табл.2.

№ п/п Измеренные величины Вычисленные величины
М Нм U В I А P Вт n2 об/мин Cos φ М Нм P2 Вт P1 Вт S1 ВА Cos φ s

7. По окончании измерений нажать кнопку «Стоп», обесточить схему и показать результаты преподавателю.

8. После получения разрешения преподавателя разобрать схему.

9. По измеренным данным вычислить вращающий момент на валу двигателя М, Нм; полезную мощность на валу P2 , Вт; активную мощность, потребляемую двигателем P1 , Вт; полную мощность, потребляемую двигателем S1 ; скольжение s; коэффициент мощности Cos φ и коэффициент полезного действия η .

10. По измеренным и вычисленным данным построить на миллиметровой бумаге характеристики двигателя:

в) рабочую характеристику Cos φ = f (Р2) , измеренную и вычисленную.

11. Материалы измерений и вычислений, полученные характеристики оформить в виде отчета по лабораторной работе.

Рис. 8. Электрическая схема исследования трехфазного асинхронного двигателя с короткозамкнутым ротором:

А1 – амперметр переменного тока на 1 А; А2 – амперметр постоянного тока на 1 А; W – ваттметр на 150 Вт; Ф – фазометр на 127 В 5 А в положении «приемник»; V – вольтметр переменного тока на 150 В; АТ – автотрансформатор; ЭТ – электромагнитный тормоз.

Контрольные вопросы

1. Устройство и принцип работы асинхронного двигателя.

3. Почему двигатель называется асинхронным?

4. Условие возникновения вращающегося магнитного поля.

5. Стандартные величины n1 (частота вращения магнитного

6. Режим холостого хода асинхронного двигателя.

7. Почему Ixx асинхронного двигателя больше чем I трансформатора.

8. Схема замещения асинхронного двигателя в режиме холостого хода.

9. Упрощенная схема замещения.

10.Почему Iпуск асинхронного двигателя в 6…8 раз больше Iн?

11 .Механическая характеристика асинхронного двигателя n = f(M); n = f(s) (естественная и реостатная).

13.Регулирование числа оборотов асинхронного двигателя.

14.Достоинства и недостатки каждого метода.

15.Типы роторов (короткозамкнутый и фазный).

16.Предназначение фазного ротора.

17.Метод ограничения Iпуск у асинхронного двигателя с короткозамкнутым ротором.

18. Метод ограничения Iпуск у асинхронного двигателя с фазным ротором.

19.Энергетическая диаграмма. Потери мощности в асинхронном двигателе.

20.КПД асинхронного двигателя.

21.Достоинства и недостатки асинхронного двигателя.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: "Что-то тут концом пахнет". 8531 — | 8117 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock detector